Pattern Recognition
In this course, we study the fundaments of pattern recognition. We adopt an engineering point of view on the development of intelligent machines which are able to identify patterns in data. The core methods and algorithms are elaborated that enable pattern recognition for a wide range of data sources including sensory data (image, video, audio, location, etc.) as well as born-digital data (text, network traffic, chemical formulas, etc.). The course is organized in two parts. In the first part, we explore statistical pattern recognition based on feature vector representation. Standard methods for unsupervised clustering and supervised classification in vector spaces will be discussed. In the second part, we investigate structural pattern recognition based on string and graph representation. For clustering and classification of structural data, dissimilarity measures will be introduced alongside with explicit and implicit vector space embedding approaches. The course is accompanied by practical exercises that involve the implementation of algorithms discussed in class and their application to exemplary pattern recognition tasks.
Details
Code | 63082 |
Type | Course |
ECTS | 5 |
Site | Fribourg |
Track(s) |
T6 – Data Science |
Semester | S2025 |
Teaching
Learning Outcomes | On successful completion of this class, you will be able to:
|
Lecturer(s) |
Andreas Fischer |
Language | english |
Course Page | The course page in ILIAS can be found at https://ilias.unibe.ch/goto_ilias3_unibe_crs_3102272.html. |
Schedules and Rooms
Period | Weekly |
Schedule | Wednesday, 14:15 - 17:00 |
Location | UniFR, PER21 |
Room | D230 |
Additional information
Comment | First Lecture |